People pay a premium for high end CPUs because they’re promised a certain level of performance. If users need to gimp the performance just to keep the the CPU stable then that’s grounds for a lawsuit…
TL;DR: Intel CPUs are crashing due to silicon degradation caused by pushing them too hard to compete with AMD. Consumers are now facing issues with their chips, and Intel is deflecting blame onto board partners.
Intel CPUs Are Crashing and It’s Intel’s Fault: Intel Baseline Profile Benchmark
Intel is Now Paying the Price for Power Spec Mess
For years now, we have highlighted Intel’s loosely defined power specifications and the problems they pose for Intel customers. We’ve published several articles and videos (on TechSpot and HUB) discussing this issue, yet little has changed. With the release of the 12th-gen series, we did receive some clarification from Intel on how the K-SKU parts should operate, specifically that PL1 equals PL2 at 253 watts. However, this is not how most motherboards functioned out of the box with XMP loaded.
Case in point, just five months ago, we examined new Intel Z790 motherboards from Asus, Asrock, MSI, and Gigabyte, when we wrote this: “as usual, the Intel platform is a bit of a mess when it comes to power configurations, and this is something we’ve been advocating Intel to fix for years now.” And on the video version, part of the title read “Stock Power Limits Are Still A Mess!”
Indeed, they were, with some of the more budget-friendly boards limiting the Core i9 to just 3.75 GHz, while others reached up to 5.6 GHz – an issue stemming from weak VRMs, but ultimately, it’s all interconnected.
The Problem
The issue now is that 13th and 14th-gen K-SKU processors have started crashing, presumably due to silicon degradation. Intel seems to be avoiding responsibility for a situation they created and unfairly blaming their board partners in the process; they’re caught in a lie and we have the receipts.Setting aside weak VRM performance, the default power specs for these Z790 boards were inconsistent. Most of the boards had no real power limits, with MSI allowing the Core i9 CPU to clock as high as the multiplier tables would permit, reaching 5.5 to 5.6 GHz for the P-cores under an extended all-core workload, resulting in a package power draw of approximately 320-350 watts.
Gigabyte was slightly more conservative with a 280-watt long-term power limit, which reduced the Core i9 processor to 4.1 GHz on the P-cores. Asus, on the other hand, adjusted their power profiles depending on the board and its VRM quality, but all tested boards adhered to the official Intel specification of 253 watts….
AC